Environmental Land Management and
Compliance Using A

Moderator: Terry Watkins, Principal, Jacobs
Speakers:

 Brendan Brown, PWS, Nature-based Solutions
Discipline Leader, CDM Smith

* Drew Reicks, Remote Sensing Specialist, CDM Smith

May 14, 2024, 3:00 PM
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HOUSEKEEPING ITEMS

Take Note of Exits

Silence Your Mobile Devices

Presentations and Audio Recordings will be available in the
Attendee Service Center until August 30, 2024

Download your PDH record in the Attendee Service Center
before August 30, 2024
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Opening Reception at Universal CityWalk
(Minimum age 18 - No Children)

! *Good for One Free Alcoholic Drinic*
Networking Reception in
Exhibit Hall
Wednesday, May 3 - 5:00 p.m

6:00 pm

Buses depart Gaylord

Get Your Wrist Band & Caribe Royale,
'ing Your Name Badge TODAY at the beginning at 6:00 p.m.
with Drink Tickets) Registration Help Desk
+ Your ID or SAME Booth




SAME Environmental Community of Interest (ECOI)

The COI will support and engage SAME Posts, DOD and Federal Agencies by providing
members with a wide range of programs, activities, and information to enable them to stay on
the forefront of environmental technologies, management and regulatory developments facing
the A/E/C community, and national security.

SAME ECOI Website -

Webinars

Networking

Joint Engineering Training Conference (JETC)

PFAS Industry and Government Engagement (IGE) Project
Post Support and Interaction

Monthly ECOI - LINK to monthly call is on SAME ECOI webpage -
—  Call currently third Wednesday of the month 1500-1600 hrs. May Change in Future

For more information contact ECOI Chair Ann Ewy
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https://www.same.org/membership-communities/communities-of-interest-list/environmental-community/
https://www.same.org/membership-communities/communities-of-interest-list/environmental-community/
mailto:annewysame@gmail.com
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Thank You to our Education Session Sponsors
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Tle)n]d:-TNpe]-d Terry Watkins, PMP

Jacobs Engineering

Principal

Fun Facts

* Sports Team: Green Bay Packers
* Vacation: Italy, Spain, Germany
* Competitive archer

®* Hobbies include working out and
shooting sports
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Brendan Brown, PWS
CDM Smith

Nature-based Solutions Discipline
Leader

Fun Facts

* Surfed in Costa Rica

* Played tennis and cross country in
high school

* Enjoys making art but is terrible at
painting
* Eagle Scout
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Drew Reicks, GISP, CFM
CDM Smith

Remote Sensing Specialist

Fun Facts

* Placed 8 in the lowa High School
Wrestling Tournament

* Grew up on the same farm as his
dad

* Favorite team: Borussia Dortmund
(BVB)

* Favorite game: Splendor
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Machine Learning Basics

Land Management: Invasive species
=

[ Restoration and Resiliency: Marsh assessment

[ Site Feasibility: Wetland Mapping

Resiliency: New urban development
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Field work is an invaluable, but limiting factor.
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Explicit results, but a fraction of the site.
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Satellitelplane data is widely available but low
spatial or temporal resolution.
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TRAINING CONFERENCE

Comprehensive understanding, but lacking
necessary details.
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Full site, detailed results to drive data to decisions.
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An expert-centered digital pipeline empowers
better decisions.

- SUurveyors

— Engineers '&’ —2®  Digital Machine Automated

W Data Learning Model AEalyﬂs and
eporting

- (Geologists
- .r'
- Scientists iy

- FAA-certified ’. _\hvf

\vfl
drone pilots |

| \'\yr

e
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& W x %

LMl PATENT-PENDING DATA COLLECTION METHODS

R i
“eny pe®

— Remote sensing

— Machine learning
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Remote Sensing

-= Common collection platforms

— Satellite, plane, UAVs/drones

== COMmMon sensors

— Camera, thermal, lidar
multispectral, hyperspectral

- COommon products

— Imagery, elevation

— Choosing the right tools

— Site size, project needs
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utomation

209 #mwelasMergenss
216 def lasMerge(las, outlas, lasTools_j
211 LasTaol-os.path. jein(lasTools_p
212 #create the command stri
213 command = [*"'+lasTool+""
214 — o *
215 #use verbose, default in arctoolid
- - 216 command.append(”-v")
— Automation 7= machine :
218 #odd input LiDAR ‘ @
219 command. append("-i")
220 command.append (""" +las+' ")
. 221 1|
ea rn I n 222 #add output LiDAR ifhan
223 command. sppend(”-o") I 0]
224 command. append (""" +outlas+""")
225 #additional command-line option d
226 #set max point Limit [ elevation v
227 command. append("-split") i
228 command. append(str(splitsize)) [ cctuclvloes <]
229
" = = 238 #report commond string sun direction for hillside shading {optional)
— uto m at| onis a p |Vota o s S v
5 command_string = str(command[8]) o o ) ; v
233 command[8] = command[@].strip( "’ %‘Mmam@m{} —
234 for i in range(l, command_length):
rt f th 235 command_string = command_string + " " + str(command[i]} [ ok || cancel | Envionments... | Showhep > |
art of the process -~ R s
p 237
238 #run command
239 check_output{command, False)
240
241 #a#losTiles#s
242 def lasTile(las, outhm, outP, lasTools_path, tileSize, buffSize):

lasTool=o0s.path.join(lasTools_path, 'lastile.exe')

43
244 #create the command string for lastile.exe
— wW \,\Y 25 comand - [ lasTosls "]

246
247 #use verbose, default in arctoolbox

. . 248 command.. append("-v")

? 249
. 250 #add input LiDAR

251 command. append(”-1i")
252 command.append (""" +las+' ")
253
254 #tile size will only create squares
255 command.. append("-tile_size")

A Utoma te it! 25 comand.append(str(tilesize))
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Automation’s role in machine learning:
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Classify/Locate
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Pixel Count

= Quantify
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Above Ground Biomass
(9/0.25m*0.25m)

il |‘H || il
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Above Ground Biomass (g/0.26m*0.25m)
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Machine Learning Basics

Multiple features

(easier/ cheaper/
faster to collect)

One property to classify or quantify

(difficult /expensive/slower to collect)
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Machine Learning Basics

Model Variables Target Class
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Validation Data
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Train the Model

Data Ground Machine
Inputs Truthing Learning
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Machine Model
Learning Model

=)

Against

Q& Measured

Ground Truthing
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Land Management:
Invasive and native species identification

How do we identify invasive species and assess the effectiveness of treatments to remove them?

Clearwater
Tampa Brandon
Riverview
- Pinellas
Seminole Park
Boyelkte
St
Petersburg
Sun City -
Center
-
0 5 10 20 Miles
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CDM Smith developed patent-pending data collection methods to
increase efficiency and improve model accuracy
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10-band
Multispectral
Drone Data
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Species identification is possible between similar species.
N R S Average of Species = = -
Individual Species Plot
10-band
Multispectral
Drone Data
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CDM Smith developed a high accurac ap of nati and
invasive species using machine learning.

Species or land cover type
B bahiagrass3c oak

bare pine
brazilian peppeuﬁ{- red maple
B cabbage palm B submerged aquatic
I cogongrass Y I smutgrass S
dead shrub B water
B dogfennel B wax myrtle
hairy indigose [ willow
Bl primrose willowsfe

5% Invasive Species
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The machine learning model can identify and quantify living and
dead Brazilian pepper.

Species or land cover type
B bahiagrassy oak

bare pine

brazilian peppe*- red maple
B cabbage palm B submerged aquatic
I cogongrass Y M smutgrasssit
dead shrub B water
B dogfennel B wax myrtle

hairy indigos’ I willow
B primrose willows

% Invasive Species
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The machine learning model can identify and quantify
dead Brazilian pepper.

Dead Brazilian pepper

: i
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Restoration and resiliency: Tidal marsh assessment

— How do we assess restoration success and resiliency in the face of climate change?

Ft. Pulaski National Monument
Savannah, GA
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Marsh Restoration
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Structure from Motion (SfM) Cah be
used to generate 3D models
from 2D |mage&
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Drone data revealed that the contractor graded too high.

Areas out of spec for target grading

20 40 80 Feet
Ao
il
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ey 1 ;
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2 J % Bl
& 4%

it
(4g g
L Target Marsh Elevations:
North Area: 2.98 +/- 0.25 ft NAVD
&5 1t South Area: 2.96 +/- 0.25 ft NAVD
oL
# . Legend

Ground Surface Elevation
[ 240-2.75 (Below Target)

b
i [ 275-3.25 (in Target)

[ 325-5.75 (Above Target)

Nole Elevations/derived from]UAV- callectad aerial imagery) via stru.clure from! motion®
Onlyjelevalions for,areas withjlessithan 0'5 fractional, vegetative coverage shown”
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High resolutions pixels identify individual Spartina plugs.

Fractional Vegetation Coverage

FVC Metric

]-0.2-02
[]02-05 . , - gt
[105-06 [ | , Sy %99
Mitigation Area 06-07 :
g Sm_ﬂ,ﬂ . Spartina planted
Reference Area [108-0.9 30-cm on center

[]09-1.0
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CDM Smith combined field data, 3D drone data, and multispectral
data in a machine learning model to quantify site-wide biomass.

;" ‘ Elevation data§
. 8
: |
" 4
4

Multispectral data
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Above Ground Biomass

2021 Random Forest AGB (g/0.25m*0.25m) (9/0.25m*0.25m)
NM
60 NR  r2=0.7783

rmse =5.2941
50

40

Predicted Value
[ ]
o

]
o

—
o

0 10 20 30 40 50 60
Field Value
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Model results were similar to field results.
Machine Learning Biomass Model 2021
1200 ki Study Type
— ’F“{"";ga""" Above Ground Biomass
1000 A SLE/RIES (9/0.25m*0.25m)
. 65
S 800
o
o
T 600
=
400 -D
0 I | "' MM
. w11}
i i
10 20 30 40 50
Above Ground Biomass (g/0.25m*0.25m)
Field Data 21
14 Study Type
II [ Mitigation
12 II Reference
£
3 8
[
2 6
4
2
0 L]
0 10 20 30 40 50 60 70
Above Ground Biomass (g/0.25m*0.25m)
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Machine learning model results allow for easy |dent|f|cat|on of
biomass loss and gain over time.

2022 - 2021

é , )
. Biomass Loss

Biomass Stable

Biomass Gain
L y
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Site Feasibility: Wetland Delineation

How do we locate wetlands to quantify how much land is available for development?

Femandina
Beach

h Jacksonville

Kacrlnnig Jacksonville
acclenny ‘ Basth

0 5 10 20 Miles

Orange Park

FDEP, Exri, HERE, Garmin, SafeGraph, FAQ, METI/MASA, USGS, EPA, NPS
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Traditional approach for delineating wetlands.
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What defines a wetland and how can we predict
their location?

7~ N\ 7~ N\ 7~ N\

NDVI from NAIP LIDAR Products SSU%‘Z% Soils

NS NS N
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What defines a wetland and how can we predict

their location?

7~ N\ 7~ N\ 7~ N\
NDVI from LIDAR SSURGO Soils

NAIP Products Data
N N N
/J\ i /\rth /J\

are ea :
CHM DEM Intensity
N N N

7~ N\

Deviation from
mean
~
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Remote Sensing Features
S —— . Infensity

Deviation from  § | . Deviation from
mean (small area) mean (large area)
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11.780000
00
1.070000
0.0
4.010000

3.070000
96
0.570000
19.504999

2.910000

0.013117
0.145349

0.050373

0.162201

0.115491

0.051313

0.056568

0.01¢
-0.032000

0.105280

0.119405
-0.058
-0.181535
-0.020164
-0.044501

-0.314218
-0.077501
-0.010010

-0.134711

-0.060596

-0.404495

3.565446
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Tabular/Pixel Based Machine Learning

R3] Wetland Boundaries

Wetland Probability
B High
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Deep Learning
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Deep Learning
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Jacksonville

FOEP, 2574, HERE Garmin, SateGraph, 144, METUTGASA, LISGS, R4, NFS

R3] Wetland Boundaries
Wetland Probability

B High
—mmm . o
Uplands 0.93 0.75 0.83
0 0.25 0.5
Wetlands 0.61 0.87 0.71 | I ! | I ! \ |
Accuracy 0.79
Macro Avg 0.77 0.81 0.77
Weighted Avg 0.83 0.79 0.79
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Ground Truthing

Wetlands
Open Water
Model Predictions
B Uplands
" Wetlands
B Open Water
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Wetland Probability
B High

 Low

Ground TruEhlnq

B4 Cpen Water
Modlel Fredictions
- Uplands
I wetlancls
- Cpen Water
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Resiliency: New urban development

How do we identify newly built structures to assess building code effectiveness?

Calgary

Vancouver
Seattle
Montreal
Toronto
Detrait Boston
Chicago
New York . |
Philadelphia "| 1 2 Lo e -
Denver 1 .
Washingt Soyfce:; Gopgle Earth |
St Lous Gttt Gl e |
San ] -
Francisco

Los Angeles

Atlanta

Dallas

Houstan

Maonterrey
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Traditional approach for identifying
development

- Parcel and permit data
— Availability limitations
- Temporal differences
—|magery

- Manual comparison of historical
imagery
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Identifying New Urban Development

- Southeastern U.S. - FEMA Region
1V

—Publicly available data

- Sentinel

— QU |Ck com putati()n Meet Earth Engine

Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial de

rchers, and developers use Earth Engine to detect changes, map trends,

juantify differences on the Earth's surface. Earth
Engine is now available for commercial use. and remains free for academic and research use.

— (Google Earth Engine

—=|_everaging existing LULC model

- Dynamic World
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GO gle Earth Englne Q, Search places and datasets . @ [ ee-geospatial
Scripts [JT= T ChangeDetec_DW * Gert Link vI Save v. Run vI Reset vI Apps EI LT gl Console [F
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Advanced remote sensing and machine learning
can benefit environmental projects.

%. Rk ‘:_..-.-. A
v

o o o 5 T
Invasive and Native Wetland Mapping/ Urban
Species Mapping Permitting Development
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There are multiple advantages of using these
technologies.

Save time/shorten schedule
Reduce field labor
Increase human safety
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There are multiple advantages of using these
technologies.

Save time/shorten schedule
Reduce field labor
Increase human safety

Higher quality data
Digital record
Data consistency
Data repeatability
Track change over time
100% site coverage
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There are multiple advantages of using these
technologies.

Save time/shorten schedule
Reduce field labor
Increase human safety

Higher quality data
Digital record
Data consistency
Data repeatability
Track change over time
100% site coverage
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These technologies can improve the efficiency, scale, and accuracy of
environmental evaluations conducted on federal lands:

- Threatened and endangered species habitat

LUETLELAND

UFPRENTUR pROTECTTED SPECIES

— Native plant communities

— Biodiversity

- Biomass/carbon sequestration

- |nvasive and exotic species

= \Vildland fire activities

- Resilience

- Track affects of climate change
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Land managers have an important role to play in
leveraging these technologies at their sites.

Spatial Resolution

Target of Interest

Abundance/Frequency

e O R R 5 .' 7o ::, 713! *,;
HETNT ENGINEER Wil
TRAINING CONFERENC

S EXPO



Better understanding the goals and objectives facilitates
selection of the right resolution, sensors, and models.

Digital Machine Automated
Data Learning Model

Analysis and
Reporting
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The right questions can help determine the scale, sensors, models, and
outputs to optimize data collection and analysis.

— What do | want to identify or know about my land? — How big of an area of interest is there?
— Why do | want to know this (regulatory, restoration, risk — How might | use this information?
mitigation)? — What field data do | already have or collect
- How frequently do | need to assess change or the target of regularly?
interest?

— \What baseline data do | have?

— ' i 2
What is the size of the problem — Are there site constraints or access issues?

- How common is the target of interest on the landscape?
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Sky Wave combines machine learning and advance
remote sensing to drive data to decisions.

JUsky wave’

Contact us:

Analysis and
Reporting

' —#® Digital Machine Automated
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.m. Data Learning Model
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Find out more:
cdmsmith.com/skywave
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THANK YOU

Please take a few
minutes to complete a
short survey about
this session. Your
feedback will help us
improve future
programming for
JETC.
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